Wake dynamics and locomotor function in fishes: interpreting evolutionary patterns in pectoral fin design.
نویسندگان
چکیده
The great anatomical diversification of paired fins within the Actinopterygii (ray-finned fishes) can be understood as a suite of evolutionary transformations in design. At a broad taxonomic scale, two clear trends exist in the morphology of the anteriorly situated pectoral fins. In comparing basal to more derived clades, there are general patterns of (i) reorientation of the pectoral fin base from a nearly horizontal to more vertical inclination, and (ii) migration of the pectoral fin from a ventral to mid-dorsal body position. As yet, the functional significance of these historical trends in pectoral fin design remains largely untested by experiment. In this paper we test the proposal that variation in pectoral fin structure has an important influence on the magnitude and orientation of fluid forces generated during maneuvering locomotion. Using digital particle image velocimetry for quantitative wake visualization, we measure swimming forces in ray-finned fishes exhibiting the plesiomorphic and apomorphic pectoral fin anatomy. Our experiments focus on rainbow trout (Oncorhynchus mykiss), a lower teleost with pectoral fins positioned ventrally and with nearly horizontally inclined fin bases, and bluegill sunfish (Lepomis macrochirus), a relatively derived perciform fish with more vertically oriented pectoral fins positioned mid-dorsally on the body. In support of hypotheses arising from our prior wake studies and previously untested models in the literature, we find that the pectoral fins of sunfish generate significantly higher forces for turning and direct braking forces closer to the center of mass of the body than the pectoral fins of trout. These results provide insight into the hydrodynamic importance of major evolutionary transformations in pectoral fin morphology within the Actinopterygii.
منابع مشابه
Wake dynamics and fluid forces of turning maneuvers in sunfish.
While experimental analyses of steady rectilinear locomotion in fishes are common, unsteady movement involving time-dependent variation in heading, speed and acceleration probably accounts for the greatest portion of the locomotor time budget. Turning maneuvers, in particular, are key elements of the unsteady locomotor repertoire of fishes and, by many species, are accomplished by generating as...
متن کاملLocomotion in sturgeon: function of the pectoral fins.
Pectoral fins are one of the major features of locomotor design in ray-finned fishes and exhibit a well-documented phylogenetic transition from basal to derived clades. In percomorph fishes, the pectoral fins are often used to generate propulsive force via oscillatory movements, and pectoral fin propulsion in this relatively derived clade has been analyzed extensively. However, in the plesiomor...
متن کاملFish biorobotics: kinematics and hydrodynamics of self-propulsion.
As a result of years of research on the comparative biomechanics and physiology of moving through water, biologists and engineers have made considerable progress in understanding how animals moving underwater use their muscles to power movement, in describing body and appendage motion during propulsion, and in conducting experimental and computational analyses of fluid movement and attendant fo...
متن کاملFunction of pectoral fins in rainbow trout: behavioral repertoire and hydrodynamic forces.
Salmonid fishes (trout, salmon and relatives) have served as a model system for study of the mechanics of aquatic animal locomotion, yet little is known about the function of non-axial propulsors in this major taxonomic group. In this study we examine the behavioral and hydromechanical repertoire of the paired pectoral fins of rainbow trout Oncorhynchus mykiss, performing both steady rectilinea...
متن کاملA hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
Past study of interspecific variation in the swimming speed of fishes has focused on internal physiological mechanisms that may limit the ability of locomotor muscle to generate power. In this paper, we approach the question of why some fishes are able to swim faster than others from a hydrodynamic perspective, using the technique of digital particle image velocimetry which allows measurement o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2002